Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines
نویسندگان
چکیده
Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1-100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses.
منابع مشابه
GP88 (Progranulin) Confers Fulvestrant (Faslodex, ICI 182,780) Resistance to Human Breast Cancer Cells
The 88 kDa glycoprotein known as GP88, Progranulin or PC cell derived growth factor is an autocrine growth factor with a unique cysteine rich motif that is over expressed in breast cancer whereas it is negative in normal mammary epithelial cells. It has been shown to play a major role in estrogen independence, tamoxifen resistance and tumorigenesis of breast cancer cells. In the present study, ...
متن کاملinterferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (faslodex, fulvestrant).
Antiestrogens induce both cytostasis (cell cycle arrest) and apoptosis, but the relationship between these end points and the signaling that regulates their induction are unclear. We have previously implicated the transcription factor and putative tumor suppressor IFN regulatory factor-1 (IRF-1) in acquired antiestrogen resistance (Gu et al., Cancer Res, 62: 3428-3437, 2002). We now show the fu...
متن کاملDifferential effect of estradiol and bisphenol A on Set8 and Sirt1 expression in prostate cancer
Exposure to estrogenic compounds has been shown to epigenetically reprogram the prostate and may contribute to prostate cancer. The goal of this study was to determine the effect of physiological doses of estradiol and bisphenol A (BPA) on the expression of histone modifying enzymes (HMEs) in prostate cancer. Using two human prostate cancer cell lines we examined the expression of Set8, a histo...
متن کاملAntiestrogen Resistant Cell Lines Expressing Estrogen Receptor α Mutations Upregulate the Unfolded Protein Response and are Killed by BHPI
Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD53...
متن کاملThe Effects of Estrogen Receptors' Antagonist on Brain Edema, Intracranial Pressure and Neurological Outcomes after Traumatic Brain Injury in Rat
Background: In previous studies, the neuroprotective effect of 17&beta-estradiol in diffuse traumatic brain injury has been shown. This study used ICI 182,780, a non-selective estrogen receptor antagonist, to test the hypothesis that the neuroprotective effect of 17&beta-estradiol in traumatic brain injury is mediated by the estrogen receptors. Methods: The ovariectomized rats were divided into...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012